Sources:

  1. --> Documentation
  2. --> Turorial

ViZDoom allows developing AI bots that play Doom using only visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.

Read more »

Sources:

  1. UWashington: CSE378, Lecture09
  2. UWashington: CSE378, Lecture10
  3. John L. Hennessy & David A. Patterson. (2019). Appendix C.1. Computer Architecture: A Quantitative Approach (6th ed.). Elsevier Inc.
  4. Randal E. Bryant & David R. O’Hallaron. (2016). Chapter 4. Processor Architecture. Computer Systems: A Programmer’s Perspective (3th ed., pp. 387-516). Pearson.

Image from: https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec10.pdf

Note: the assembly code in this article can be MIPS or RISCV. This shouldn't be consufusing since the only big difference between them is that MIPS add a $ before the name of each register:

1
2
3
4
5
# MIPS:
add $t0, $t1, $t2 # add values in $t1 and $t2, the result is stored in $t0

# RISC-V
add t0, t1, t2 # add values in t1 and t2, the result is stored in t0
Read more »

Sources:

  1. John L. Hennessy & David A. Patterson. (2019). Chapter 2. Memory Hierarchy Design. Computer Architecture: A Quantitative Approach (6th ed., pp. 78-148). Elsevier Inc.
  2. RISC-V instruction format
  3. ECS201A: ISAs and Machine Representation
Read more »

Sources:

  1. UWashington: CSE471, Lecture04
  2. UCSD: CSE240A, Lecture13
  3. John L. Hennessy & David A. Patterson. (2019). Chapter 3. Instruction-Level Parallelism and Its Exploitation. Computer Architecture: A Quantitative Approach (6th ed., pp. 168-266). Elsevier Inc.
Read more »

Sources:

  1. UWashington: CSE378, Lecture13
  2. John L. Hennessy & David A. Patterson. (2019). Chapter 1. Fundamentals of Quantitative Design and Analysis. Computer Architecture: A Quantitative Approach (6th ed.). Elsevier Inc.
Read more »
0%