Random Variables
Sources:
Random Variables
Notation
Symbol | Type | Description |
---|---|---|
Set | Sample space, the set of all possible outcomes | |
Element of |
A specific outcome in the sample space | |
Event space, the collection of subsets of |
||
Function |
Probability measure, a function |
|
Random variable | A measurable function |
|
Function |
Distribution of the random variable |
|
The Borel |
||
Cumulative distribution function (CDF) | Probability that |
|
Probability density function (PDF) | Describes the density of |
|
Probability mass function (PMF) | Describes the probability of |
|
Probability space | The transformed probability space induced by the random variable |
Abbreviations
Abbreviation | Description |
---|---|
r.v. | Random variable |
Probability density function | |
PMF | Probability mass function |
CDF | Cumulative distribution function |
Definition
The term "random variable" is somewhat misleading, as it is neither "random" nor a "variable" in the conventional sense. Instead, it is a function.
A random variable
such that for every Borel set
Here, we use the shorthand notation:
Distribution of a Random Variable
If
This function
Nature of Random Variable
使用随机变量的本质就是转换概率空间, 将
Explanation
首先我们知道:
- 对于概率空间
, 概率度量函数 的参数为 , , . - 对于概率空间
, 概率度量函数 的参数为 , , .
虽然我们用statement(->参见前文))将
Example
例如, 定义随机实验为"购买一个汉堡, 品尝其肉馅是什么肉", 规定:
, 记四个元素(outcome)为 . = .- 定义event
: "汉堡是牛肉馅或者鱼肉馅的", 这个event是 的集合, 即: . . - 定义event
: "汉堡是猪肉馅或者鸭肉馅的", . .
- 定义event
= 事件 发生的概率.
概率空间 =
接着定义随机变量
, 记四个元素(outcome)为 . = .- 定义event
: " 为True", 这个event是 的集合, 即: . , . - 定义event
: " 为True", 这个event是 的集合, 即: . , .
- 定义event
= 事件 发生的概率.
概率空间 =
定义event
注意到,
Cumulative distribution function (CDF)
The distribution
where
Properties of a CDF:
. . is non-decreasing. is right-continuous:
Reconstruction from the CDF
From
extending uniquely to all Borel sets.
Discrete and continuous random variables
- If
gives measure one to a countable set of reals, then is called a discrete random variable.- In this case,
can be described by a probability mass function (PMF).
- In this case,
- If
gives zero measure to every singleton set, and hence to every countable set, is called a continuous random variable.- If it is absolutely continuous,
can be described by a probability density function (PDF).
- If it is absolutely continuous,
Probability density function (PDF)
For a continuous random variable
If
is continuous at ,
- The total integral equals 1 :
Probability mass function (PMF)
The PMF
where
Note: In writing