Random Variables
Sources:
- NOTES ON PROBABILITY by Greg Lawler
Random Variables
Notation
| Symbol | Type | Description |
|---|---|---|
| $ $ | Set | Sample space, the set of all possible outcomes |
| $ $ | Element of $ $ | A specific outcome in the sample space |
| $ $ | \(\sigma\)-algebra | Event space, the collection of subsets of $ $ that satisfy the properties of a \(\sigma\)-algebra |
| $ $ | Function \(\mathbb{P} : \mathcal{F} \to [0,1]\) | Probability measure, a function \(\mathbb{P} : \mathcal{F} \to [0,1]\) satisfying Kolmogorov’s axioms |
| $ X $ | Random variable | A measurable function $ X : $ |
| \(\mu_X\) | Function \(\mu_X : \mathcal B \to [0,1]\) | Distribution of the random variable $ X $, defined on Borel subsets of $ $ |
| $ $ | \(\sigma\)-algebra | The Borel \(\sigma\)-algebra on $ $ |
| $ F_X(x) $ | Cumulative distribution function (CDF) | Probability that $ X $ takes a value less than or equal to $ x $, $ F_X(x) = (X x) $ |
| $ f_X(x) $ | Probability density function (PDF) | Describes the density of $ X $ if $ X $ is absolutely continuous |
| $ p_X(x) $ | Probability mass function (PMF) | Describes the probability of $ X $ taking a specific value $ x $ if $ X $ is discrete |
| $ (, , _X) $ | Probability space | The transformed probability space induced by the random variable $ X $ |
Abbreviations
| Abbreviation | Description |
|---|---|
| r.v. | Random variable |
| Probability density function | |
| PMF | Probability mass function |
| CDF | Cumulative distribution function |
Definition
The term "random variable" is somewhat misleading, as it is neither "random" nor a "variable" in the conventional sense. Instead, it is a function.
A random variable \(X\) is a measurable function that maps outcomes in the sample space \(\Omega\) to the real numbers \(\mathbb{R}\). Formally, it is defined as:
\[ X: \Omega \longrightarrow \mathbb{R} \]
such that for every Borel set \(B \subseteq \mathbb{R}\),
\[ X^{-1}(B)=\{\omega \in \Omega: X(\omega) \in B\} \in \mathcal{F} . \]
note that \(X^{-1}(B)\) is a set of outcomes, i.e., an event.
Here, we use the shorthand notation: \[ \{X \in B\} = \{\omega \in \Omega: X(\omega) \in B\} \]
to denote event \(X^{-1}(B)\).
Distribution of a Random Variable
If \(X\) is a random variable, then for every Borel set \(B \subseteq \mathbb{R}, X^{-1}(B) \in \mathcal{F}\). Using this, we can define a function \(\mu_X\) on Borel sets: \[ \mu_X(B)=\mathbb{P}(X \in B)=\mathbb{P}\left(X^{-1}(B)\right) . \]
This function \(\mu_X\) is a measure, making \(\left(\mathbb{R}, \mathcal{B}, \mu_X\right)\) a probability space. The measure \(\mu_X\) is called the distribution of the random variable \(X\).
Nature of Random Variable
使用随机变量的本质就是转换概率空间, 将 \((\Omega, \mathcal{F}, \mathbb{P})\) 转化为 \(\left(\mathbb{R}, \mathcal B, \mu_X\right)\), 使问题的形式更加方便用数学处理.
Explanation
首先我们知道:
- 对于概率空间 \((\Omega, \mathcal{F}, \mathbb{P})\), 概率度量函数\(\mathbb P(E)\)的参数为\(E\), \(E \subseteq \Omega\), \(E \in \mathcal F\).
- 对于概率空间 \(\left(\mathbb{R}, \mathcal B, \mu_X\right)\), 概率度量函数\(\mu_X(B)\)的参数为\(B\), \(B \subseteq \Omega\), \(E \in \mathcal B\).
虽然我们用statement(->参见前文))将 \(B\) 和 \(E\) 定义为event, 但 \(B\) 和 \(E\) 自身是outcome的集合.
Example
例如, 定义随机实验为"购买一个汉堡, 品尝其肉馅是什么肉", 规定:
- \(\Omega = \{牛肉馅,猪肉馅,鸭肉馅,鱼肉馅\}\), 记四个元素(outcome)为\(\omega_1, \omega_2, \omega_3, \omega_4\).
- \(\mathcal F\) = \(\{(E_1), (E_2)\} = \{(\omega_1,\omega_4), (\omega_2,\omega_3)\}\).
- 定义event \(E_1\): "汉堡是牛肉馅或者鱼肉馅的", 这个event是\(\omega_1, \omega_4\)的集合, 即: \(E_1=\{\omega_1, \omega_4\}\). \(\omega_1, \omega_4 \in \Omega\).
- 定义event \(E_2\): "汉堡是猪肉馅或者鸭肉馅的", \(E_2=\{\omega_2, \omega_3\}\). \(\omega_1, \omega_3 \in \Omega\).
- \(\mathbb P(E)\) = 事件\(E\)发生的概率.
概率空间 = \((\Omega, \mathcal{F}, \mathbb{P})\).
接着定义随机变量\(X\): \(X(\omega_i) = i\). 记\(X\)的取值为\(\mathcal X\), 则:
- \(\mathcal X = \{1,2,3,4\}\), 记四个元素(outcome)为\(x_1, x_2, x_3, x_4\).
- \(\mathcal B\) = \(\{(B_1), (B_2)\} = \{(x_1,x_4), (x_2,x_3)\} = \{(1,4), (2,3)\}\).
- 定义event \(B_1\): "\(X^{-1}(B_1)\)为True", 这个event是\(x_1, x_4\)的集合, 即: \(B_1=\{x_1, x_4\} =\{1, 4\}\). \(1, 4 \in \mathcal X\), \((1,4) \in \mathcal B\).
- 定义event \(B_1\): "\(X^{-1}(B_2)\)为True", 这个event是\(x_2, x_3\)的集合, 即: \(B_2=\{x_2, x_3\} =\{2, 3\}\). \(2, 3 \in \mathcal X\), \((2,3) \in \mathcal B\).
- \(\mu_X(B)\) = 事件\(B\)发生的概率.
概率空间 = \(\left(\mathbb{R}, \mathcal B, \mu_X\right)\), 或者说 \(\left(\mathcal {X}, \mathcal B, \mu_X\right)\).
定义event \(B\): "\(X\)取值为1或者4", 这个event其实是\(x_1,x_4\)的集合, 即: \(B=\{1, 4\}\). \(x_1, x_4 \in \mathcal X\), \(\mathcal X\) 是\(\mathbb R\)的子集.
注意到, \(B_1, B_2\)自身只是outcome的集合, 但我们用"\(X^{-1}(B_1), X^{-1}(B_2)\)成立"这两个statement来定义它们. \(B_1, B_2\)的取值让statement为True, 也就是事件发生.
Cumulative distribution function (CDF)
The distribution \(\mu_X\) is often expressed in terms of its cumulative distribution function (CDF): \[ F_X(x)=\mathbb{P}(X \leq x)=\mu_X((-\infty, x]) \]
where \((-\infty, x]\) is indeed a Borel set in \(\mathbb{R}\).
Properties of a CDF:
\(\lim _{x \rightarrow-\infty} F(x)=0\).
\(\lim _{x \rightarrow \infty} F(x)=1\).
\(F\) is non-decreasing.
\(F\) is right-continuous: \[ F\left(x^{+}\right)=\lim _{\epsilon \downarrow 0} F(x+\epsilon)=F(x) . \]
Reconstruction from the CDF
From \(F_X(x)\), we can reconstruct \(\mu_X\) as: \[ \mu_X((-\infty, x])=F_X(x), \]
extending uniquely to all Borel sets.
Discrete and continuous random variables
- If \(\mu_X\) gives measure one to a countable set of reals, then \(X\) is called a discrete random variable.
- In this case, \(X\) can be described by a probability mass function (PMF).
- If \(\mu_X\) gives zero measure to every singleton set, and hence to every countable set, \(X\) is called a continuous random variable.
- If it is absolutely continuous, \(X\) can be described by a probability density function (PDF).
Probability density function (PDF)
For a continuous random variable \(X\), the PDF \(f_X\), if it exists, satisfies:
\[ F_X(x)=\int_{-\infty}^x f_X(t) d t . \]
If \(f_X\) is continuous at \(x\),
\[ f_X(x)=\frac{d}{d x} F_X(x) . \]
- The total integral equals 1 :
\[ \int_{-\infty}^{\infty} f_X(x) d x=1 \]
Probability mass function (PMF)
The PMF \(p_X(x)\) of a discrete random variable is defined as: \[ p_X(x)=\mathbb{P}(X=x), \]
where \(p_X(x)>0\) for values \(x\) in the support of \(X\).
Note: In writing \(P(X=x)\), we are using \(X=x\) to denote an event, consisting of all outcomes \(\omega\) to which \(X\) assigns the number \(x\). This event is also written as \(\{X=x\} ;\) formally, \(\{X=x\}\) is defined as \(\{\omega \in \Omega: X(s)=x\}\), but writing \(\{X=x\}\) is shorter and more intuitive.